Mathematics Formulas & Tables

$x^2$

  1. $ax^2+bx+c=0(a\neq0),x=\dfrac{-b\pm\sqrt{b^2-4ac}}{2a}$
  2. $x^2+y^2=r^2(r>0)$
  3. $\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}=1(a\geq b,c=\sqrt{a^2-b^2})$
  4. $\dfrac{x^2}{a^2}-\dfrac{y^2}{b^2}=1(a\leq b,c=\sqrt{b^2-a^2})$
  5. $y^2=2px(p>0)$
  6. $(a\pm b)^2=a^2\pm2ab+b^2$
  7. $(a+b)(a-b)=a^2-b^2$
  8. $(a+b+c)^2=a^2+b^2+c^2+2ab+2bc+2ac$
  9. $a^2+b^2\geq2ab$
  10. $\dfrac{a+b}2\geq\sqrt{ab}(a\geq0,b\geq0)$

$x^3$

  1. $a^3+b^3+c^3-3abc=(a+b+c)(a^2+b^2+c^2-ab-bc-ac)=(a+b+c)[(a-b)^2+(b-c)^2+(c-a)^2]$
  2. $(a\pm b)^3=a^3\pm3a^2b+3ab^2\pm b^3$
  3. $a^3\pm b^3=(a\pm b)(a^2\mp ab+b^2)$

$x^n$

  1. $a^n-b^n=(a-b)(a^{n-1}+a^{n-2}b+...+a^{n-k}b^k+...+b^{n-1})$
  2. $a^{2n+1}+b^{2n+1}=(a+b)[a^{2n}-a^{2n-1}b+...+(-1)^ka^{n-k}b^k+...+b^{2n}]$
  3. $(a+b)^n=C_n^0a^n+C_n^1a^{n-1}b+...+C_n^ka^{n-k}b^k+...+C_n^nb^n$
  4. $(a-b)^n=C_n^0a^n-C_n^1a^{n-1}b+...+(-1)^kC_n^ka^{n-k}b^k+...+(-1)^nC_n^nb^n$

Inequalities

  1. Mean value inequality: If $a_1,a_2,...,a_n\geq0$, then $\dfrac n{\frac1{a_1}+\frac1{a_2}+...+\frac1{a_n}}\leq\sqrt[n]{a_1a_2...a_n}\leq\dfrac{a_1+a_2+...+a_n}n\leq\sqrt{\dfrac{a_1^2+a_2^2+...+a_n^2}n}$, the equal sign holds iff $a_1=a_2=...=a_n$
  2. Power mean inequality: If $a_1,a_2,...,a_n\geq0,\alpha>\beta>0$, then $\left(\dfrac{a_1^\alpha+a_2^\alpha+...+a_n^\alpha}n\right)^{\frac1\alpha}\geq\left(\dfrac{a_1^\beta+a_2^\beta+...+a_n^\beta}n\right)^{\frac1\beta}$, the equal sign holds iff $a_1=a_2=...=a_n$
  3. Weighted mean value inequality: If $a_1,a_2,...,a_n,\alpha_i>0,\sum_{i=1}^n\alpha_i=1$, then $a_1^{\alpha_1}a_2^{\alpha_2}...a_n^{\alpha_n}\leq a_1\alpha_1+a_2\alpha_2+...+a_n\alpha_n$
  4. Cauchy's inequality: $(a_1b_1+a_2b_2+...+a_nb_n)^2\leq(a_1^2+a_2^2+...+a_n^2)(b_1^2+b_2^2+...+b_n^2)$, the equal sign holds iff $b_1=b_2=...=b_n=0$ or $\dfrac{a_1}{b_1}=\dfrac{a_2}{b_2}=...=\dfrac{a_n}{b_n}$
  5. Sorting inequality: If $a_1\leq a_2\leq...\leq a_n,b_1\leq b_2\leq...\leq b_n$, then $a_1b_n+a_2b_{n-1}+...+a_nb_1\leq a_1b_{t_1}+a_2b_{t_2}+...+a_nb_{t_n}\leq a_1b_1+a_2b_2+...+a_nb_n(\{t_1,t_2,...,t_n\}=\{1,2,...,n\})$
  6. Chebyshev's inequality: If $a_1\leq a_2\leq...\leq a_n,b_1\leq b_2\leq...\leq b_n$, then $n\sum_{i=1}^n a_kb_{n-k+1}\leq\sum_{i=1}^n a_k\sum_{i=1}^n b_k\leq n\sum_{i=1}^n a_kb_k$
  7. Jensen's inequality: For a concave function $f(x),x\in(a,b),x_1,x_2,...,x_n\in(a,b)$, then $f(\dfrac{\sum_{i=1}^n a_ix_i}{\sum_{i=1}^n a_i}) \geq\dfrac{\sum_{i=1}^n a_if(x_i)}{\sum_{i=1}^n a_i}$
  8. Schur's inequality: If $x,y,z\geq0$, then $x^r(x-y)(x-z)+y^r(y-z)(y-x)+z^r(z-x)(z-y)\geq0$
  9. Hölder's inequality: If $a_1,a_2,...,a_n,b_1,b_2,...,b_n,p,q>0,\frac1p+\frac1q=1$, then $\sum_{i=1}^n a_ib_i\leq(\sum_{i=1}^n a_i^p)^{\frac1p}(\sum_{i=1}^n b_i^q)^{\frac1q}$, the equal sign holds iff $b_1=b_2=...=b_n=0$ or $\dfrac{a_1^p}{b_1^q}=\dfrac{a_2^p}{b_2^q}=...=\dfrac{a_n^p}{b_n^q}$
  10. If $a_1,a_2,...,a_n,b_1,b_2,...,b_n,m>0$, then $\sum_{i=1}^n\dfrac{a_i^{m+1}}{b_i^m}\geq\dfrac{(\sum_{i=1}^n a_i)^{m+1}}{(\sum_{i=1}^n b_i)^m}$, the equal sign holds iff $\dfrac{a_1}{b_1}=\dfrac{a_2}{b_2}=...=\dfrac{a_n}{b_n}$
  11. Carlson inequality: If $a_{ij},\alpha_i\geq0,\sum_{i=1}^n\alpha_i=1$, then $\prod_{j=1}^m(\sum_{i=1}^n a_{ij})^{\alpha_j}\geq\sum_{i=1}^n(\prod_{j=1}^m a_{ij}^{\alpha_j})$
  12. Abel sum: Let $S_k=\sum_{i=1}^k a_i$, then $\sum_{i=1}^n a_kb_k=\sum_{i=1}^{n-1}S_i(b_i-b_{i+1})+S_nb_n$

Trigonometric functions

  1. $\sin a\csc a=1$
  2. $\cos a\sec a=1$
  3. $\tan a\cot a=1$
  4. $\dfrac{\sin a}{\cos a}=\tan a$
  5. $\sin^2a+\cos^2a=1$
  6. $\tan^2a+1=\sec^2a$
  7. $\cot^2a+1=\csc^2a$
  8. $\cos(a\pm b)=\cos a\cos b\mp\sin a\sin b$
  9. $\sin(a\pm b)=\sin a\cos b\pm\cos a\sin b$
  10. $\tan(a\pm b)=\dfrac{\tan a\pm\tan b}{1\mp\tan a\tan b}$
  11. $\sin2a=2\sin a\cos a$
  12. $\cos2a=\cos^2a-\sin^2a=1-2\sin^2a=2\cos^2a-1$
  13. $\tan2a=\dfrac{2\tan a}{1-\tan^2a}$
  14. $\sin\dfrac a2=\pm\sqrt{\dfrac{1-\cos a}2}$
  15. $\cos\dfrac a2=\pm\sqrt{\dfrac{1+\cos a}2}$
  16. $\tan\dfrac a2=\pm\sqrt{\dfrac{1-\cos a}{1+\cos a}}=\dfrac{\sin a}{1+\cos a}=\dfrac{1-\cos a}{\sin a}$
  17. $\sin a+\sin b=2\sin\dfrac{a+b}2\cos\dfrac{a-b}2$
  18. $\sin a-\sin b=2\cos\dfrac{a+b}2\sin\dfrac{a-b}2$
  19. $\cos a+\cos b=2\cos\dfrac{a+b}2\cos\dfrac{a-b}2$
  20. $\cos a-\cos b=-2\sin\dfrac{a+b}2\sin\dfrac{a-b}2$
  21. $\tan a\pm\tan b=\dfrac{\sin(a\pm b)}{\cos a\cos b}=\tan(a\pm b)\mp\tan a\tan b\tan(a\pm b)$
  22. $\sin a\cos b=\dfrac12[\sin(a+b)+\sin(a-b)]$
  23. $\cos a\cos b=\dfrac12[\cos(a+b)+\cos(a-b)]$
  24. $\sin a\sin b=-\dfrac12[\cos(a+b)-\cos(a-b)]$
  25. $\sin3a=3\sin a-4\sin^3a$
  26. $\cos3a=4\cos^3a-3\cos a$
  27. $\tan3a=\tan a\tan(60-a)\tan(60+a)$
  28. $\sin a=\dfrac{2\tan\dfrac a2}{1+\tan^2\dfrac a2}$
  29. $\cos a=\dfrac{1-\tan^2\dfrac a2}{1+\tan^2\dfrac a2}$
  30. $\tan a=\dfrac{2\tan\dfrac a2}{1-\tan^2\dfrac a2}$
  31. $\dfrac a{\sin A}=\dfrac b{\sin B}=\dfrac c{\sin C}=2R$
  32. $c^2=a^2+b^2-2ab\cos C$
  33. $\sin A+\sin B+\sin C=4\cos{\dfrac A2}\cos{\dfrac B2}\cos{\dfrac C2}$
  34. $\cos A+\cos B+\cos C=1+4\sin{\dfrac A2}\sin{\dfrac B2}\sin{\dfrac C2}$
  35. $\sin^2A+\sin^2B+\sin^2C=2+2\cos A\cos B\cos C$
  36. $\cos^2A+\cos^2B+\cos^2C=1-2\cos A\cos B\cos C$
  37. $\sin^2{\dfrac A2}+\sin^2{\dfrac B2}+\sin^2{\dfrac C2}=1-2\sin{\dfrac A2}\sin{\dfrac B2}\sin{\dfrac C2}$
  38. $\cos^2{\dfrac A2}+\cos^2{\dfrac B2}+\cos^2{\dfrac C2}=2+2\sin{\dfrac A2}\sin{\dfrac B2}\sin{\dfrac C2}$
  39. $\sin2A+\sin2B+\sin2C=4\sin A\sin B\sin C$
  40. $\cos2A+\cos2B+\cos2C=-1-4\cos A\cos B\cos C$
  41. $\tan A+\tan B+\tan C=\tan A\tan B\tan C$
  42. $\cot A\cot B+\cot A\cot C+\cot B\cot C=1$
  43. $\cot{\dfrac A2}+\cot{\dfrac B2}+\cot{\dfrac C2}=\cot{\dfrac A2}\cot{\dfrac B2}\cot{\dfrac C2}$
  44. $\tan{\dfrac A2}\tan{\dfrac B2}+\tan{\dfrac A2}\tan{\dfrac C2}+\tan{\dfrac B2}\tan{\dfrac C2}=1$

Inverse trigonometric functions

  1. $\arcsin a+\arccos a=\dfrac\pi2$
  2. $\arctan a+\operatorname{arccot}a=\dfrac\pi2$
  3. $\cos\arcsin a=\sin\arccos a$
  4. $\arcsin\cos a=\arccos\sin a\;(2k\pi\leq a\leq 2k\pi+\dfrac\pi2)$
  5. $\arctan a+\arctan b=\arctan\dfrac{a+b}{1-ab}+k\pi$

Limits and calculus

  1. $\lim_{x\rightarrow0}\dfrac{\sin x}x=1$
  2. $\lim_{x\rightarrow\infty}(1+\dfrac1x)^x=e$
  3. $\lim_{x\rightarrow x_0}(f(x)\pm g(x))=\lim_{x\rightarrow x_0}f(x)\pm\lim_{x\rightarrow x_0}g(x)$
  4. $\lim_{x\rightarrow x_0}(f(x)g(x))=\lim_{x\rightarrow x_0}f(x)\times\lim_{x\rightarrow x_0}g(x)$
  5. $\lim_{x\rightarrow x_0}\dfrac{f(x)}{g(x)}=\dfrac{\lim_{x\rightarrow x_0}f(x)}{\lim_{x\rightarrow x_0}g(x)}(\lim_{x\rightarrow x_0}g(x)\neq0)$
  6. $\lim_{x\rightarrow x_0}f(x)^n=[\lim_{x\rightarrow x_0}f(x)]^n$
  7. $a'=0$
  8. $(x^a)'=ax^{a-1}(a\neq0)$
  9. $(a^x)'=a^x\ln a$
  10. $(e^x)'=e^x$
  11. $(\log_ax)'=\dfrac1x\log_ae$
  12. $(\ln x)'=\dfrac1x$
  13. $(\sin x)'=\cos x$
  14. $(\cos x)'=-\sin x$
  15. $(\tan x)'=\sec^2x$
  16. $(\cot x)'=-\csc^2x$
  17. $(\sec x)'=\sec x\tan x$
  18. $(\csc x)'=-\csc x\cot x$
  19. $(\arcsin x)'=\dfrac1{\sqrt{1-x^2}}$
  20. $(\arccos x)'=-\dfrac1{\sqrt{1-x^2}}$
  21. $(\arctan x)'=\dfrac1{1+x^2}$
  22. $(\operatorname{arccot}x)'=-\dfrac1{1-x^2}$
  23. $(f(x)\pm g(x))'=f'(x)\pm g'(x)$
  24. $(f(x)g(x))'=f'(x)g(x)+f(x)g'(x)$
  25. $(\dfrac{f(x)}{g(x)})'=\dfrac{f'(x)g(x)-f(x)g'(x)}{g(x)^2}$
  26. $\int0dx=C$
  27. $\int adx=ax+C$
  28. $\int x^adx=\dfrac1{a+1}x^{a+1}+C(a\neq-1)$
  29. $\int a^xdx=a^x\log_ae+C$
  30. $\int e^xdx=e^x+C$
  31. $\int \dfrac1xdx=\ln|x|+C$
  32. $\int\sin xdx=-\cos x+C$
  33. $\int\cos xdx=\sin x+C$
  34. $\int(f(x)\pm g(x))dx=\int f(x)dx\pm\int g(x)dx$

Summations of series

  1. $\sum_{n=1}^xn=\dfrac12x(x+1)$
  2. $\sum_{n=1}^xn^2=\dfrac16x(x+1)(2x+1)$
  3. $\sum_{n=1}^xn^3=\dfrac14x^2(x+1)^2$
  4. $\sum_{n=0}^xa^n=\dfrac{a^{x+1}-1}{a-1}$
  5. $\sum_{n=0}^x2^n=2^{x+1}-1$
  6. $\sum_{n=1}^\infty\dfrac1{a^n}=\dfrac1{a-1}(|a|>1)$
  7. $\sum_{n=1}^\infty\dfrac1{2^n}=1$
  8. $\sum_{n=1}^\infty\dfrac1{n^2}=\dfrac{\pi^2}6$
  9. $\sum_{n=1}^\infty\dfrac1{n^4}=\dfrac{\pi^4}{90}$
  10. $\sum_{n=0}^\infty\dfrac{a^n}{n!}=e^a$
  11. $\sum_{n=0}^\infty\dfrac{(-1)^na^{2n+1}}{(2n+1)!}=\sin a$
  12. $\sum_{n=0}^\infty\dfrac{(-1)^na^{2n}}{(2n)!}=\cos a$

Perimeters and areas of plane figures

FigurePerimeterArea
Rectangle$2(a+b)$$ab$
Square$4a$$a^2$
Circle$2\pi r=\tau r$$\pi r^2=\dfrac12\tau r^2$
Triangle$a+b+c$$\dfrac12 ah_a=\dfrac12ab\sin c=\sqrt{p(p-a)(p-b)(p-c)}=\dfrac12\sqrt{a^2b^2-\left(\dfrac{a^2+b^2-c^2}2\right)^2}$
Parallelogram$ah$
Trapezoid$\dfrac12(a+b)h$
Regular triangle$3a$$\dfrac{\sqrt3}4a^2$
Regular pentagon$5a$$\dfrac{\sqrt{25+10\sqrt5}}4a^2$
Regular $n$-polygon$na$$\dfrac{n\cot(\dfrac{180}n)}4a^2$

Surface areas and volumes of solid figures

FigureSurface areaVolume
Cuboid$2(ab+ah+bh)$$abh$
Cube$6a^2$$a^3$
Columns$Sh$
Centrums$\dfrac13Sh$
Platforms$\dfrac13(S+\sqrt{Ss}+s)h$
Cylinder$2\pi r(r+h)$$\pi r^2h$
Cone$\pi r(r+l)$$\dfrac13\pi r^2h$
Truncated cone$\pi(R^2+r^2+Rl+rl)$$\dfrac13\pi(R^2+Rr+r^2)h$
Sphere$4\pi r^2$$\dfrac43\pi r^3$

Power of $2$

$n$$2^n$
01
12
24
38
416
532
664
7128
8256
9512
101 024
112 048
124 096
138 192
1416 384
1532 768
1665 536
17131 072
18262 144
19524 288
201 048 576
212 097 152
224 184 304
238 388 638
2416 777 216
2533 554 432
2667 108 864
27134 217 728
28268 435 456
29536 870 912
301 073 741 824
312 147 483 648
324 294 967 296
338 589 934 592
3417 179 869 184
3534 359 738 368
3668 719 476 736
37137 438 953 472
38274 877 906 944
39549 755 813 888
401 099 511 627 776
412 199 023 255 552
424 398 046 511 104
438 796 093 022 208
4417 592 186 044 416
4535 184 372 088 832
4670 368 744 177 664
47140 737 488 355 328
48281 474 976 710 656
49562 949 953 421 312
501 125 899 906 842 624
512 251 799 813 685 248
524 503 599 627 370 496
539 007 199 254 740 992
5418 014 398 509 481 984
5536 028 797 018 963 968
5672 057 594 037 927 936
57144 115 188 075 855 872
58288 230 376 151 711 744
59576 460 752 303 423 488
601 152 921 504 606 846 976
612 305 843 009 213 693 952
624 611 686 018 427 387 904
639 223 372 036 854 775 808
6418 446 744 073 709 551 616

Power of $3$

$n$$3^n$
01
13
29
327
481
5243
6729
72 187
86 561
919 683
1059 049

Power of $5$

$n$$5^n$
01
15
225
3125
4625
53 125
615 625
778 125
8390 625
91 953 125
109 765 625

Frequently used pythagorean numbers (simplest)

  1. 3, 4, 5
  2. 5, 12, 13
  3. 7, 24, 25
  4. 8, 15, 17
  5. 9, 40, 41
  6. 12, 35, 37
  7. 20, 21, 29

Frequently used triangle with 120 degrees (simplest)

  1. 3, 5, 7
  2. 7, 8, 13
  3. 5, 16, 19
  4. 8, 18, 23

Frequently used triangle with 60 degrees (simplest)

  1. 1, 1, 1
  2. 3, 7, 8
  3. 5, 7, 8
  4. 5, 19, 21
  5. 7, 13, 15
  6. 8, 13, 15
  7. 8, 23, 26
  8. 16, 19, 21
  9. 18, 23, 26

$\pi$

$\pi\approx3.$

$1415926535\,8979323846\,2643383279\,5028841971\,6939937510$

$5820974944\,5923078164\,0628620899\,8628034825\,3421170679$

$8214808651\,3282306647\,0938446095\,5058223172\,5359408128$

$4811174502\,8410270193\,8521105559\,6446229489\,5493038196$

$4428810975\,6659334461\,2847564823\,3786783165\,2712019091$

$4564856692\,3460348610\,4543266482\,1339360726\,0249141273$

$7245870066\,0631558817\,4881520920\,9628292540\,9171536436$

$7892590360\,0113305305\,4882046652\,1384146951\,9415116094$

$3305727036\,5759591953\,0921861173\,8193261179\,3105118548$

$0744623799\,6274956735\,1885752724\,8912279381\,8301194912$

$9833673362\,4406566430\,8602139494\,6395224737\,1907021798$

$6094370277\,0539217176\,2931767523\,8467481846\,7669405132$

$0005681271\,4526356082\,7785771342\,7577896091\,7363717872$

$1468440901\,2249534301\,4654958537\,1050792279\,6892589235$

$4201995611\,2129021960\,8640344181\,5981362977\,4771309960$

$5187072113\,4999999837\,2978049951\,0597317328\,1609631859$

$5024459455\,3469083026\,4252230825\,3344685035\,2619311881$

$7101000313\,7838752886\,5875332083\,8142061717\,7669147303$

$5982534904\,2875546873\,1159562863\,8823537875\,9375195778$

$1857780532\,1712268066\,1300192787\,6611195909\,2164201989$

$\tau$

$\tau\approx6.$

$2831853071\,7958647692\,5286766559\,0057683943\,3879875021$

$1641949889\,1846156328\,1257241799\,7256069650\,6842341359$

$6429617302\,6564613294\,1876892191\,0116446345\,0718816256$

$9622349005\,6820540387\,7042211119\,2892458979\,0986076392$

$8857621951\,3318668922\,5695129646\,7573566330\,5424038182$

$9129713384\,6920697220\,9086532964\,2678721452\,0498282547$

$4491740132\,1263117634\,9763041841\,9256585081\,8343072873$

$5785180720\,0226610610\,9764093304\,2768293903\,8830232188$

$6611454073\,1519183906\,1843722347\,6386522358\,6210237096$

$1489247599\,2549913470\,3771505449\,7824558763\,6602389825$

$9667346724\,8813132861\,7204278989\,2790449474\,3814043597$

$2188740554\,1078434352\,5863535047\,6934963693\,5338810264$

$0011362542\,9052712165\,5571542685\,5155792183\,4727435744$

$2936881802\,4499068602\,9309917074\,2101584559\,3785178470$

$8403991222\,4258043921\,7280688363\,1962725954\,9542619921$

$0374144226\,9999999674\,5956099902\,1194634656\,3219263719$

$0048918910\,6938166052\,8504461650\,6689370070\,5238623763$

$4202000627\,5677505773\,1750664167\,6284123435\,5338294607$

$1965069808\,5751093746\,2319125727\,7647075751\,8750391556$

$3715561064\,3424536132\,2600385575\,3222391818\,4328403978$

$e$

$e\approx2.$

$7182818284\,5904523536\,0287471352\,6624977572\,4709369995$

$9574966967\,6277240766\,3035354759\,4571382178\,5251664274$

$2746639193\,2003059921\,8174135966\,2904357290\,0334295260$

$5956307381\,3232862794\,3490763233\,8298807531\,9525101901$

$1573834187\,9307021540\,8914993488\,4167509244\,7614606680$

$8226480016\,8477411853\,7423454424\,3710753907\,7744992069$

$5517027618\,3860626133\,1384583000\,7520449338\,2656029760$

$6737113200\,7093287091\,2744374704\,7230696977\,2093101416$

$9283681902\,5515108657\,4637721112\,5238978442\,5056953696$

$7707854499\,6996794686\,4454905987\,9316368892\,3009879312$

$7736178215\,4249992295\,7635148220\,8269895193\,6680331825$

$2886939849\,6465105820\,9392398294\,8879332036\,2509443117$

$3012381970\,6841614039\,7019837679\,3206832823\,7646480429$

$5311802328\,7825098194\,5581530175\,6717361332\,0698112509$

$9618188159\,3041690351\,5988885193\,4580727386\,6738589422$

$8792284998\,9208680582\,5749279610\,4841984443\,6346324496$

$8487560233\,6248270419\,7862320900\,2160990235\,3043699418$

$4914631409\,3431738143\,6405462531\,5209618369\,0888707016$

$7683964243\,7814059271\,4563549061\,3031072085\,1038375051$

$0115747704\,1718986106\,8739696552\,1267154688\,9570350354$

$Ð$

$Ð\approx0.$

$5840100488\,0478917102\,6249167135\,5734883056\,6908655081$

$9281784197\,9107908364\,5819149637\,2089369026\,1711409559$

$8621679226\,7152527586\,6935894686\,2618252825\,4561281924$

$9647991571\,1991841866\,9863599724\,5221416574\,4205050207$

$7784686934\,5390733422\,5050978540\,5274496866\,4095158612$

$7583776330\,9458526519\,9627816965\,9131567494\,8719351465$

$2455794583\,7982911446\,4$

Table of trigonometric functions

$\theta$$\sin\theta$$\cos\theta$$\tan\theta$
$0$$0$$1$$0$
$15$$\dfrac{\sqrt6-\sqrt2}4$$\dfrac{\sqrt6+\sqrt2}4$$2-\sqrt3$
$18$$\dfrac{\sqrt5-1}4$$\dfrac{\sqrt{10+2\sqrt5}}4$$\dfrac{\sqrt{25-10\sqrt5}}5$
$22.5$$\dfrac{\sqrt{2-\sqrt2}}2$$\dfrac{\sqrt{2+\sqrt2}}2$$\sqrt2-1$
$30$$\dfrac12$$\dfrac{\sqrt3}2$$\dfrac{\sqrt3}3$
$36$$\dfrac{\sqrt{10-2\sqrt5}}4$$\dfrac{\sqrt5+1}4$$\sqrt{5-2\sqrt5}$
$45$$\dfrac{\sqrt2}2$$\dfrac{\sqrt2}2$$1$
$54$$\dfrac{\sqrt5+1}4$$\dfrac{\sqrt{10-2\sqrt5}}4$$\dfrac{\sqrt{25+10\sqrt5}}5$
$60$$\dfrac{\sqrt3}2$$\dfrac12$$\sqrt3$
$67.5$$\dfrac{\sqrt{2+\sqrt2}}2$$\dfrac{\sqrt{2-\sqrt2}}2$$\sqrt2+1$
$72$$\dfrac{\sqrt{10+2\sqrt5}}4$$\dfrac{\sqrt5-1}4$$\sqrt{5+2\sqrt5}$
$75$$\dfrac{\sqrt6+\sqrt2}4$$\dfrac{\sqrt6-\sqrt2}4$$2+\sqrt3$
$90$$1$$0$$\infty$

Download link of the next table (exsct.xlsx).